
Parsimony and phylogenetic

trees

Lecture 15

Phylogenetics

• Inferring phylogenies from a given data set

Species 1 Species 2

Hypothetical

ancestor

Two approaches to inferring

phylogenies

• Distance-based: for example paiwise edit

distance, score of pairwise alignment etc.

• Character-based: examine each character

separately in a given site of a biological

sequence

Distance-based - recap

• Input: distance matrix of pairwise

distances for N species

• Goal: find a tree consistent with the

distance matrix. This means that the sum

of edge lengths connecting each pair of

leaves ij corresponds to a distance Mij

Additivity of distances
• For any 4 objects, i,j,k,m, there are 3 different sums of 2 distances

each:

• Dij+Dkm, Dik+Djm, Dim+Djk

• From these 3 sums, 2 should be equal and greater than the third – this

will allow to group the smallest in between 3 into a separate subtree

i

j

k

m

i

j

k

m

The distances are additive iff for any 4 objects there exits the

following combination: Dij+Dkm<(Dim+Djk=Dik+Djm)

Why the distances have to be

additive

For 3 objects, any set of distances is OK:

Let iO=a, jO=b, kO=c, then Dij=a+b, Dik=a+c, Djk=b+c

i

j

k

m

O

Why the distances have to be

additive

Let iO=a, jO=b, kO=c

Dij=a+b, Dik=a+c, Djk=b+c

If we are adding the fourth object, m, to an arbitrary position

P in the tree, and let mP=y, and kP=x, then OP=c-x

i

j

k

m
O

a

b

c

P y

x

Then:

Dim+Djk=a+c-x+y + b+c=a+b+y+(2c-x)

Dik+Djm=a+c + b+c-x+y=a+b+y+(2c-x)

and

Dij+Dkm=a+b + x+y=a+b+y +x

2c-x>=x, since 2c>=2x

The rule of additivity

• The distances are additive if, for any 4

objects, i,j,k,m,

i

j

k

m

i

j

k

m

Dij+Dkm<(Dim+Djk=Dik+Djm)

If the distances are not additive, we CANNOT construct a phylogenetic tree

UPGMA algorithm - summary

• Initialization:

– Create N clusters, 1 species per cluster

– Set the size of each cluster to 1

– Create leaf for each cluster

• Iteration (until only 1 cluster left)

– Find Ci and Cj with min dCiCj

– Create a new cluster C(ij) which has n(ij)=ni+nj members

– Connect Ci and Cj through a new parent node and set the
distance from this new parent node to the leaf node of each
cluster to ½ dCiCj

– Delete columns and rows that correspond to amalgamed
clusters i and j

– Add a column and a row for a new cluster

– Compute distances from a new cluster C(ij) to all remaining
clusters:

dC(ij)Ck=Σall x€C(ij), all y €Ck dXY/(n(ij)*nk)

What was the goal?

• Input: distance matrix of pairwise

distances for N species

• Goal: find a tree consistent with the

distance matrix. This means that the sum

of edge lengths connecting each pair of

leaves ij corresponds to a distance Mij

UPGMA tree – consistent with M?

A B C D E

A 0

B 1 0

C 4 3 0

D 8 7 2 0

E 10 9 4 6 0

E
2.5

0.9

1.5

2.9

C

D

1

1

A

B

0.5

0.5

A B C D E

A 0

B 1 0

C 6.8 6.8 0

D 6.8 6.8 2 0

E 6.8 6.8 5 5 0

This was caused by averaging distances

between elements of the clusters

This would not happen if the molecular clock

had constant speed over all branches of the tree

Less ambitious goal

• Find the tree which predicts the set of

distances as closely as possible

SSQ(T)=Σi from 1 to NΣj≠iwij(dij-TreeDij)

The least squares method for fitting the function to the experimental curve

dij – input distance (value Mij in the distance matrix)

wij – weight which intuitively quantifies the accuracy of distances

Tree-Dij – distance between leaf i and leaf j in the tree (sum of edge

lengths)

Distance-based phylogeny

• Small problem: the tree is given, minimize

the above expression

• Large problem: build a tree - which

minimizes SSQ - from scratch (NP-

complete)

SSQ(T)=Σi from 1 to NΣj≠iwij(dij-TreeDij)

Can we improve this tree?

A B C D E

A 0

B 1 0

C 4 3 0

D 8 7 2 0

E 10 9 4 6 0

E
2.5

0.9

1.5

2.9

C

D

1

1

A

B

0.5

0.5

A B C D E

A 0

B 1 0

C 6.8 6.8 0

D 6.8 6.8 2 0

E 6.8 6.8 5 5 0

Small problem has a solution

A B C D E

A 0

B 1 0

C 4 3 0

D 8 7 2 0

E 10 9 4 6 0

E
2.5

0.9

1.5

2.9

C

D

0.5

1.5

A

B

0.5

0.5

A B C D E

A 0

B 1 0

C 6.8 6.8 0

D 6.8 6.8 2 0

E 6.8 6.8 4.5 5.5 0

We can optimize the distances in the tree as

much as we want, by redistributing the length

between sibling leaves

Ultrametric trees and UPGMA

• The tree of slide 15 is clocklike, ultrametric: the

total length of the path from a given internal

node to each leaf is the same.

• The assumption: the molecular clock of

mutations ticks with a constant pace

• UPGMA reconstructs the tree based on this

molecular clock assumption, that is why a new

node is always created at the same distance

from all the leaves

When the tree reflects reality

• If the solution to SSQ(T)=0, and there was a
molecular clock with constant pace, then
UPGMA guarantees to find an optimal solution, if
not:
– It can find a good enough solution, but the correctness

of the tree topology is not guaranteed

– Use the neighbor-joining algorithm to check the
correctness of the tree topology. This algorithm relies
on additivity but does not require the distances to be
ultrametric

SSQ(T)=Σi from 1 to NΣj≠iwij(dij-TreeDij)

Test for ultrametric condition

• We can predict whether the reconstruction of the
real tree is likely to be correct by testing our
distances for ultrametric condition:

The distance matrix is ultrametric if for any triplet
of sequences, Xi, Xj, Xk, the distances dij, dik,
djk are either all equal or two are equal and the
remaining one is smaller

Thus, if distances were derived from a real tree
with a molecular clock, the distance matrix has
to be ultrametric

Ultrametric and non-ultrametric

distance matrices

A B C D

A 0

B 1 0

C 4 2 0

D 8 7 5 0

A B C D

A 0

B 4 0

C 2 4 0

D 8 8 8 0

dAB=1, dAC=4, dBC=2

Non-ultrametric matrix

Ultrametric matrix

Ultrametric trees

A B C

or

A B C

AB=AC>BC AB=AC=BC

The rule for ultrametric trees:

2 out of 3 distances have a tie, and are >= the third distance

x x

y

y-x

AB=y+y-x+x=2y

AC=2y

BC=2x, x<=y, since y-x.=0 (no negative edge lengths)

End of part 1: distance-based

phylogenies

Part 2. Character-based

(parsimony based)

phylogenies

Parsimony

• In science, parsimony is preference for the least
complex explanation. This is regarded as good when
judging hypotheses.

• Occam's razor also states the "principle of parsimony“:
entia non sunt multiplicanda praeter necessitatem, is
the principle that "entities must not be multiplied
beyond necessity": the simplest explanation or
strategy tends to be the best one

• Under maximum parsimony, the preferred
phylogenetic tree is the tree that requires the
smallest number of evolutionary changes.

Evaluating the tree:

small parsimony problem

• Under the maximum parsimony, we seek

the tree which has the fewest total number

of mutational events along its branches

• Finding the most parsimonous tree is the

NP-complete problem

The Fitch algorithm for evaluating

the tree given the multiple alignment
1 2 3

A a a t

B c g c

C c g c

D t g t

1 2 3 L(T)

5

A B C D

Input: multiple alignment and the

suggested tree topology

Output: the “length” of the tree – the

total number of mutational events

which corresponds to a given tree

A B C D A B C D

Perform DFS for each position and label each parent node by an intersection of its

children. If this intersection is empty, label parent by the union of its children

In case of an empty intersection, L(T) will be increased by 1

ac ct

c

ag g

g

tc tc

tc

T1

Character-based phylogeny problem
with parsimony score

•

Input:
–

a set of N species

–

a set of M characters for each species
–

The input is generally presented as an NxM
matrix C, where each entry Cij represents the
value of character j for species i

–

In addition, the weight matrix may be supplied
to weight the score of transition between
different characters

The parsimony score of the tree.
Intuition

•

The most parsimonous

explanation of a given
phylogeny is the tree with an overall minimum
number of changes along its branches

•

The logic is the basic philosophy of Ockham's
razor – finding the simplest explanation that
works

•

The score is the total number of times the value
of some character changes along some edge

The parsimony score of the tree.
Definition

•

Let V(T) be a set of vertices and E(T) be a set of
edges of a given phylogenetic

tree, and let the

value of a character j in vertex v be vj.

PScore(T)=Σ(for each v,u €E(T)) |{j: vj≠uj}|

v: AC

u: AT For this edge, we add 1 to the total
parsimony score of the tree

Pscore example

C T

C C T T TC

TC

What is Pscore of this tree?

Parsimony problems
•

Small parsimony problem: given a topology of a
rooted phylogenetic

tree and the character

matrix C, find a labeling of ancestral sequences
which implies the minimum parsimony score

•

Large parsimony problem: given the character
matrix C, build the tree with the minimum
parsimony score (minimum number of character
changes along its edges) – NP-hard

Assumptions

•

The character changes are mutually
independent

•

After 2 species diverged, they continue to
evolve separately

•

Each character split is a 2-way split –
bifurcating (binary) tree

The Fitch algorithm for the small
parsimony problem

1 2 3

A a a t

B c g c

C c g c

D t g t

Input:

matrix C (multiple alignment)

tree T

Output:

Labeling of ancestral nodes
which minimizes the
parsimony score of the tree

A B DC

The Fitch algorithm. Phase I
1 2 3

A a a t

B c g c

C c g c

D t g t

Compute the sets of all possible
character states for each internal node,
based on the states of its children

Each leaf node contains only 1 state for
each character, and is initially marked
with this character

Perform post-order traversal of the tree
(each node is evaluated only after all its
children have been evaluated) and for
each node v compute the candidate
character set A B DC

The Fitch algorithm. Phase I
1 2 3

A a a t

B c g c

C c g c

D t g t

Phase I.

For each column j of matrix C:

//initialize

for each leaf node v of species i:

Setv=Cij

A B DC

j=1

a c c t

The Fitch algorithm. Phase I
1 2 3

A a a t

B c g c

C c g c

D t g t

Phase I.

For each column j of matrix C:

//initialize

for each leaf node v:

Setv=Cij

perform post-order traversal of T

for each internal node v

with children u and w:

if Setu

∩

Setw

≠ Ǿ

Setv =Setu ∩ Setw
else

Setu U Setw

A B DC

j=1

a c c t

ac ct

c

The Fitch algorithm. Phase I intuition

•

If there is a state which fits both children,
we take it as their common ancestor. If
there is no such state (the intersection is
empty), we take as the candidates the sets
of its children, since this is better than
taking any other set which does not occur
in any of the children

The Fitch algorithm phase I example
1 2 3

A a a t
B c g c
C c g c
D t g t

1 2 3

A B C D A B C D A B C D

ac ct

c

ag g

g

tc tc

tc

T1

characters

The Fitch algorithm. Phase II

1 2 3

A a a t

B c g c

C c g c

D t g t

A B DC

j=1

a c c t

ac ct

c

We determine value vj to assign
to each internal node, which we
choose from the candidate set of
characters

We perform pre-order traversal
(each child is evaluated after its
parent has been evaluated)

The Fitch algorithm. Phase II

1 2 3

A a a t

B c g c

C c g c

D t g t

A B DC

j=1

a c c t

ac ct

c

For each character j

perform pre-order traversal of T

for each vertex v with parent u

if uj € Setv
vj=uj

else

vj=any element from Setv

A B DC
a c c t

c c

c

The parsimony
score for the first
character=2

The Fitch algorithm phase II example
1 2 3

A a a t
B c g c
C c g c
D t g t

1 2 3

A B C D A B C D A B C D

ac ct

c

ag g

g

tc tc

tc

1 2 3

A B C D A B C D A B C D

c c

c

g g

g

t t

t

ca c t ga g g ct c t

The total parsimony
score of this tree
with this optimal
labeling is 5

The Fitch algorithm. Time complexity

•

If there are k possible values of a
character, then for a single character we
perform at most 2k operations, and with
2N total nodes in the tree, there is O(Nk)
work for a single character

• O(NMk) for all M characters

The weighted parsimony. The
algorithm by Sankoff

•

Different, application-specific costs are
assigned for each change of character
from state to state

•

This is more realistic, since substitutions
happen with different probabilities

•

An overall algorithm is similar to the Fitch
algorithm (you can read it in your textbook)

All possible trees need to be evaluated in
order to find the most parsimonous tree

1 2 3
A a a t
B c g c
C c g c
D t g t

1 2 3 L(T)
?

A C B D A C B D A C B D

Find the most parsimonous tree for this example: T1, T2 or T3 ?

1 2 3 L(T)
?

A D B C A D B C A D B C

T2

T3

Large Parsimony problem for
4x3 matrix

The large parsimony problem

•

Input: A matrix C describing M characters
for a set of N species

Mij –

state of the j-th

character for species i
Mi – label of species i. All labels are distinct

Goal: find the most parsimonous

tree:
topology, leaf labeling and labels for
internal nodes

The problem is NP-hard

How many different trees

• For 2 species (N=2) only 1 possible tree

A B

How many different trees

•

For 3 species (N=3): a new leaf can be
added by splitting any of 2+1 branches

A B A B A BC C C

How many different trees
•

For 4 species (N=4): for each of these 3 trees, a
new leaf can be added by splitting any of 4+1
branches

A B A B A BC C C

1*3*5*…(2N-3) possible trees (2n-3)!! – exponential number of different trees

Solution for the large parsimony
problem

•

A brute-force solution: enumerate all
possible trees, compute the PScore of
each tree, and choose the tree with a
minimum score

•

Optimization over the search space:
– Branch-and-bound

The Branch-and-Bound technique

•

The search is presented as the leaves of the search tree.
Each node in this tree corresponds to some variant of a
possible phylogenetic tree

•

In order to apply the B&B technique, the score of each
search node should be monotonous, i. e. the score of
each node is >= the score of any of its ancestors

•

In this case, the algorithm guarantees to find the best
tree, but it does not guarantee that the search will be
faster than the exponential time

• Performs quite good in practice

The Branch-and-Bound technique

•

The search tree is traversed in order, and
the score of the best leaf found so far is
kept as a bound B.

•

Whenever a node is reached with the
score >B, the search tree is pruned at this
node, i.e. its subtree

is not searched, since

it is guaranteed that any leaf in its subtree
cannot have score <=B

The Branch-and-Bound technique

•

In level k of the tree we have nodes representing
all possible phylogenetic trees for the first k
species

1 tree for species A,B

Tree 1 for species A,B, C

5 trees for species A,B,C,D

Tree 2 for species A,B, C

Tree 3 for species A,B, C

5 trees for species A,B,C,D

5 trees for species A,B,C,D

Level 1

Level 2

Level 3

The Branch-and-Bound technique
•

There are 2k-1 places to add a new species to an existing tree, thus
each node at level k branches into 2k-1 children.

• The requirement for monotonicity is satisfied, since adding a new
node cannot reduce the PScore of the tree

1 tree for species A,B

Tree 1 for species A,B, C

5 trees for species A,B,C,D

Tree 2 for species A,B, C

Tree 3 for species A,B, C

5 trees for species A,B,C,D

5 trees for species A,B,C,D

Level 1

Level 2

Level 3

The Branch-and-Bound technique
•

The first tree for all N species is determined by finding a local minimum
using one of the optimization techniques. This local minimum in many cases
will be also a global minimum.

• The PScore of this tree is used as the bound on the rest of the search
nodes, most of which are pruned and not expanded

1 tree for species A,B

Tree 1 for species A,B, C

5 trees for species A,B,C,D

Tree 2 for species A,B, C

Tree 3 for species A,B, C

5 trees for species A,B,C,D

5 trees for species A,B,C,D

Level 1

Level 2

Level 3

	Character-based (parsimony based) phylogenies
	Character-based phylogeny problem
	The parsimony score of the tree. Intuition
	The parsimony score of the tree. Definition
	Pscore example
	Pscore example
	Character-based phylogeny
	Assumptions
	The Fitch algorithm for the small parsimony problem
	The Fitch algorithm. Phase I
	The Fitch algorithm. Phase I
	The Fitch algorithm. Phase I
	The Fitch algorithm. Phase I intuition
	The Fitch algorithm phase I example
	The Fitch algorithm. Phase II
	The Fitch algorithm. Phase II
	The Fitch algorithm phase II example
	The Fitch algorithm. Time complexity
	The weighted parsimony. The algorithm by Sankoff
	All possible trees need to be evaluated in order to find the most parsimonous tree
	The large parsimony problem
	How many different trees
	How many different trees
	How many different trees
	Solution for the large parsimony problem
	The Branch-and-Bound technique
	The Branch-and-Bound technique
	The Branch-and-Bound technique
	The Branch-and-Bound technique
	The Branch-and-Bound technique
	Character compatibility and perfect phylogeny

